Contents

Original research articles

A review of the palaeo-environment of Kangaroo Island, South Australia, through the Late Pleistocene and Holocene with notes on a recent study
Shaun Adams, Matthew McDowell and Gavin Prideaux

Moonta A'gas Dynnergh? The implications of Cornish language signage in the Moonta Mines State Heritage Area
Ella Stewart-Peters

Virtual Archaeology and New Possibilities for Historic Site Interpretation: A case study from Point Puer, Tasmania
John Stephenson

Research essay

Neutron Activation Analysis (NAA): What is it and how is it useful for archaeological investigation?
Catherine Bland

Field reports

From Village Mounds to Monuments: New survey in the Upper Mun River Valley, northeast Thailand
Caitlin Evans

An Education in Italy
Sarah Hutchinson

Using Old Maps to Create New Data
Andrew Frost

Dig It dialogue

Cross Boundaries and Remain Questioning: An interview with Ian Hodder
Jana Rogasch

Book reviews

Archaeology, Anthropology and Interstellar Communication edited by Douglas A. Vakoch
Kathleen Gorey

Iron Age Hillforts in Britain and Beyond by D.W. Harding
Catriona Santilli

ArchSoc news

Journal profile: Anthropology: Bachelors to Doctorates (ABD)

Cover image: Digital recreation of what the Point Puer Boys’ Prison may have looked like in 1845, when the population of the prison peaked at approximately 800 juvenile inmates (created by John Stephenson, May 2013; see pages 89-94)

Email: dig.it@flindersarchsoc.org
Web: flindersarchsoc.org
Twitter: @FlindersArchSoc
Facebook: /archsocdigit
Join our free mailing list: archsoc@flinders.edu.au
Editorial

Dig It is a community product. The total number of people involved in writing, editing, formatting, reviewing, layouting and printing this issue were 39 from 24 different institutions – and that does not even include the greater number of people who provide helpful comments and ideas along the way, or write and talk to us to let us know they appreciate our work – all of which are very important things to keep us going. Special thanks goes out to ArchSoc, who are always there in the background offering practical help at the most critical times.

Compared to the 2014-1 issue, this second issue of 2014 has a more local touch, but still includes reports about archaeological work being done in places as far away as Thailand, Italy, the UK, and South America. We are proud to have encouraged a number of undergraduate and Masters students to publish their thoughts and research. We want to particularly develop this part of the journal by encouraging fresh new authors to share their ideas. One step towards this goal was a book review Master Class, held in November together with Dr Alice Gorman, book review editor of Australian Archaeology, that encouraged 16 students to write reviews for AA and Dig It – two of which readers can find in this issue.

And since Dig It is a community product many editors and review panel members will stay on in 2015 when Jordan Ralph will take over editor-in-chief with new ideas and enthusiasm. During the last weeks, we have been preparing ideas for making Dig It even more successful in the future. The 2014 Dig It team would like to thank ArchSoc for giving us the opportunity to be part of a rewarding and creative experience. Personally I would like to thank all authors, editors, and reviewers for the hard work and dedication that is needed to create one of only three peer-reviewed archaeology student journals in the world: Dig It!

Jana Rogasch
Editor, Dig It: The Journal of the Flinders Archaeological Society
<jana.rogasch@flinders.edu.au>

President’s Address

The second half of 2014 was a busy one for the Flinders Archaeological Society. During this period not only did the Society support University events such as O’week in late July and the Open Day in early August, it undertook a new direction. Under the guidance of a new look Executive Committee, ArchSoc organised a series of workshops in order to allow members the opportunity to further develop their professional skills. Participants came together in a relaxed atmosphere and in total three workshops have been held since July; two Total Station workshops (August and September), and a GPS workshop (October). Thanks is especially given to the two professionals, Rob Koch and Jordan Ralph, who gave their time pro bono to ArchSoc, and who also committed to undertaking further workshops in 2015. ArchSoc continued to support the Flinders University Department of Archaeology’s Thursday Seminars in 2014 and looks forward to continuing to do so in 2015. In November, ArchSoc also supported the Book Review Master Class with Dr. Alice Gorman.

In October, ArchSoc was asked to take part in the Highercombe Museum Vintage Fair. This was a direct result of the involvement of ArchSoc members in the public archaeology event carried out during About Time: South Australia’s History Festival in May. As a result of its connection with Highercombe, ArchSoc went on to present a brief overview of the value of potential relationships with branches of the National Trust, at the State Conference of the National Trust of South Australia on 19th November. This presentation was undertaken with a view to setting up future opportunities of field work and research for ArchSoc members. Overall, however, membership was down for 2014 and this is something that needs to be addressed in 2015. Membership fees will, however, remain at $15, with no concessions, for the coming year. The ArchSoc 5-year-plan (a product of the Forum held in November) is exciting and offers future committees the benefit of an in-place strategy for the future direction of ArchSoc.

In review, 2014 has been an innovative and productive year. To ensure that the vision for the future direction of ArchSoc materialises, continued energy and commitment from all ArchSoc members will be needed in 2015.

Dianne Riley
President, Flinders Archaeological Society 2014
<rile0066@flinders.edu.au>
A review of the palaeo-environment of Kangaroo Island, South Australia, through the Late Pleistocene and Holocene with notes on a recent study

Shaun Adams1, Matthew McDowell1 and Gavin Prideaux1

1 School of Biological Sciences, Flinders University, <adam0245@flinders.edu.au> <matthew.mcdowell@flinders.ed.au> <gavin.prideaux@flinders.edu.au>

Abstract

Kangaroo Island, South Australia, is Australia’s third largest island and only 14 km from the mainland, however, it was uninhabited by people when Europeans arrived in the 19th century (Baudin 1800; Flinders 1814). Previous palaeontological and archaeological research on Kangaroo Island has emphasised raised levels of faunal extinctions following post-glacial sea level rise and the subsequent isolation of Kangaroo Island from the Australian mainland (Hope et al. 1977). A recent study (Adams 2013) shows that although species richness drops during the early Holocene, the geographical size of Kangaroo Island is large enough to support a diverse community of Australian native mammals and did so up until the arrival of Europeans. Changes in sediment composition and faunal community tell the story of post-glacial increase in precipitation and subsequent changes in vegetation structure and faunal species abundances which may have directly influenced subsistence strategies of local hunter gatherer populations.

Introduction

Kangaroo Island, South Australia, is the only land-bridge island on Earth known to have late Quaternary vertebrate, vegetative and associated environmental records spanning >50 thousand years before present (BP) (McDowell et al. 2013c). This resource makes Kangaroo Island an ideal place for reconstructing the late Pleistocene and Holocene palaeoenvironment. For much of the last 100,000 years, Kangaroo Island was a prominent landmark on a vast continental shelf ~50 km from the coast and directly west of the Palaeo-River Murray (Gingele et al. 2007). Following the Last Glacial Maximum (LGM) sea levels rose ~120 m isolating Kangaroo Island and its non-volant inhabitants from mainland Australia (Gingele et al. 2004).

Figure 1: Entrance to Kelly Hill Cave 1 via solution pipe (photograph: Shaun Adams, 2013)
In 2013 McDowell conducted a palaeontological excavation within limestone caves at Kelly Hill Conservation Park (K1-P1), on south west Kangaroo Island. The deposit dates to between ~55,000 and 6,600 BP and contains abundant vertebrate remains. McDowell concluded that the mammal community of Kangaroo Island was resilient to climate change exhibiting little drop in species richness compared to the marked impact of island isolation, conforming to predictions of the equilibrium theory of island biogeography (MacArthur 1967). The deposit reported on by McDowell et al. (2013b) ceased deposition 6,600 years ago, leading him to garner insight into the mid to late Holocene record of Kangaroo Island from a compilation of archaeological assemblage data.

In 2013 a second excavation was conducted within Kelly Hill Cave 1 (K1-P2), close to the modern entrance, with the aim of seeking a more complete record of faunal change on Kangaroo Island through the Holocene (Adams 2013). AMS radiocarbon techniques were used to date depositional units while sedimentary, taphonomic and geochemical analyses were conducted to assess provenance of sediments and compare with previous results (McDowell et al. 2013b). Taxonomic identification and diversity analyses offer insights into the role of anthropogenic impact, climatic variability and habitat isolation on Australian mammal species.

Archaeology of Kangaroo Island

Kangaroo Island was uninhabited by people when Europeans arrived in the 19th century (Baudin 1800; Flinders 1814). A century later hammerstones were recorded at Murrays Lagoon, Hawks Nest Station (Howchin 1903), triggering interest into the fate of the original inhabitants. The following year Murrays Lagoon was visited by anthropologists from the South Australian Museum and stone tools were recorded (Tindale and Maegraith 1931). Tindale continued to work on Kangaroo Island naming a distinctive tool industry 'The Kartan' after the Ramindjeri name for the island Karta. Extensive surveying was completed by Cooper in the early to mid-twentieth century recording over 120 sites (Cooper 1960). The date of abandonment of Kangaroo Island has been postulated by several authorities, however, the latest dates were reported by Draper (1992) who conducted excavations at Rocky River arriving at ~1,200 years ago for the last evidence of people.

Ron Lambert excavated Seton Rockshelter, 6 km from the south coast of Kangaroo Island, in the early 1970's. This rockshelter contained a stratified deposit with lithics and abundant faunal remains dated between 16,000 and 10,000 years BP (Hope et al. 1977). Faunal analysis was subsequently carried out by Jeanette Hope who found that only seven of the 25 species recorded in the deposit survived up to present with extinct megafauna (Procoptodon gilli) dated at a tenuous 17,000 years BP. Hope was able to divide species recovered into three categories; preference for grassland or open vegetation, dense vegetation (heath, shrubland, woodland forest) and riparian/ swamp habitats (Hope et al. 1977). Using the niche characteristics of recorded species Hope postulated that during the terminal Pleistocene there were extensive areas of heath/woodland and open vegetation with a semi-arid climate (Hope et al. 1977). With a change to Holocene conditions the rockshelter became used more intensively and many of the previously recorded species
disappear. Hope et al. (1977) states, ‘their extinction presumably reflects the development of dense vegetation over the island in the Holocene, in response to increasing rainfall, accompanied possibly by a reduction in burning.’

Recent re-analysis of the Seton faunal material and stratigraphic integrity of the deposit was undertaken to assess the likelihood that 17,000 year old megafaunal remains in the deposit were reworked from older layers (McDowell et al. 2013a). This confirmed previously reported dates for Seton Rockshelter and could not discount the possibility of late-surviving megafauna on Kangaroo Island. Taphonomic and palaeoecological analyses showed that from 21,000 to 17,000 years BP Sarcophilus harrisii and owls were the main accumulators, with increasing human occupation after 17,000 years BP (McDowell et al. 2013a). McDowell et al. (2013a) concluded that changes in the faunal structure of the Seton assemblage coincided with the presence of stone tools and therefore interpreted changes in species richness to be due to a change in the mode of accumulation rather than, or coinciding with, a changing climate.

In the 1980s Neale Draper conducted excavation at Cape Du Couedic Rockshelter on the south coast of Kangaroo Island (Draper 1992). This site was visited intermittently between 7,500 and 6,800 years BP and preserved faunal material and lithics. Draper identified bones of Grey Kangaroo (Macropus fuliginosus), Tamar Wallaby (Macropus eugenii) and seals (Neophoca cinerea) stating that 8% of bone had been burnt and 29% exhibited cut marks (Draper 1992). Draper observed a high proportion of broken bone from maintenance of the site and ruled out mammal carnivore accumulation. Langeluddecke (2001) reported on marks (Draper 1992). Draper identified bones of Grey Kangaroo (Macropus fuliginosus), Tamar Wallaby (Macropus eugenii) and seals (Neophoca cinerea) stating that 8% of bone had been burnt and 29% exhibited cut marks (Draper 1992). Draper observed a high proportion of broken bone from maintenance of the site and ruled out mammal carnivore accumulation. Langeluddecke (2001) reported on marks (Draper 1992). Draper identified bones of Grey Kangaroo (Macropus fuliginosus), Tamar Wallaby (Macropus eugenii) and seals (Neophoca cinerea) stating that 8% of bone had been burnt and 29% exhibited cut marks (Draper 1992). Draper observed a high proportion of broken bone from maintenance of the site and ruled out mammal carnivore accumulation. Langeluddecke (2001) reported on marks (Draper 1992).

McDowell et al. (2013a) used this data as a baseline for species presence at the time of European settlement. 12 species were recorded in the Bales Bay assemblage consisting of rodents, kangaroos, pygmy possums, dunnarts, along with possums, echidnas and wombats.

Palynology of Kangaroo Island

Hope et al. (1975) extracted pollen from sediment samples obtained through coring at Black Creek Swamp. He concluded that the LGM on Kangaroo Island was unusually wet and open vegetation of grasslands and scattered eucalypts were dominant up to 17,000 years BP. Around 15,000 years BP a more stable environment was formed with a change to wetter conditions within the past 2,000 years BP. In 1974 Hope surveyed pollen analysis sites identifying Lashmar’s Lagoon on eastern Kangaroo Island (Clark and Lampert 1981). Analysis involved retrieval of five cores to a depth of 12 m. Dates showed continuous sedimentation over a 10,000 years period with a 3,000 year gap from 7,000 to 10,000 years BP (Clark and Lampert 1981). Results showed that from 7,000 to 6,400 years BP Kangaroo Island was more open than any time since with grasses (Poaceae), saltbush (Chenopodiaceae) and daisies (Asteraceae) dominant. Casuarina stricta then became the dominant vegetation up until 4,800 years BP (Clark and Lampert 1981). This change is indicative of a wetter environment than today between 7,000 and 4,800 years BP and was also recorded in a study on the adjacent mainland (Bickford and Gell 2005). From 4,800 years BP C. stricta and grasses are reduced and replaced with eucalypts and dry shrubs. This floral community indicates a drying landscape up to 1,300 years BP with an increase in daisies (Asteraceae). Carbonised particle content from Lashmar’s Lagoon indicates a distinct change in fire regime ~2,500 years BP (Clark and Lampert 1981). This change does not coincide with change in vegetation or climate and was interpreted as intermittent large fires with significant build-up of fuel. Before 2,500 years BP carbonised particles suggest low intensity frequent fires which return to the area with the onset of European settlement (Clark and Lampert 1981). Clark and Lampert (1981) suggested that this change in fire regime may signal the human abandonment of Kangaroo Island (Clark and Lampert 1981).

Results

A new excavation completed in Kelly Hill Cave 1 (K1) (Adams 2013) illustrated layers preserving articulated skeletal remains, discernible stratigraphy and radiocarbon dates from Late Pleistocene to Holocene (K1-P2). The radiocarbon ages showed mostly continuous deposition over the past 20,000 years while layers consisting of laterite and reworked sediments were excluded from the study.

Full results are to be published in an upcoming paper, however, it can be stated that K1-P2 yielded over 2,000 identifiable mammalian specimens representing 32 species. All species have been previously identified in archaeological and/or

<table>
<thead>
<tr>
<th>Layer</th>
<th>Measured Radiocarbon Age (BP)</th>
<th>Calibrated Date (BP)</th>
<th>Dating Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>1D</td>
<td>1160 ± 30</td>
<td>1040 - 980</td>
<td>Beta Labs Ltd</td>
</tr>
<tr>
<td>5</td>
<td>3957 ± 25</td>
<td>4423 - 4237</td>
<td>Waikato University</td>
</tr>
<tr>
<td>5</td>
<td>6190 ± 40</td>
<td>7170 - 6950</td>
<td>Beta Labs Ltd</td>
</tr>
<tr>
<td>7A</td>
<td>7110 ± 30</td>
<td>7900 - 7870</td>
<td>Beta Labs Ltd</td>
</tr>
<tr>
<td>7A</td>
<td>8070 ± 40</td>
<td>8830 - 8790</td>
<td>Beta Labs Ltd</td>
</tr>
<tr>
<td>7D</td>
<td>12,220 ± 50</td>
<td>14,190 - 14,000</td>
<td>Beta Labs Ltd</td>
</tr>
<tr>
<td>8</td>
<td>26,087 ± 130</td>
<td>31,078 - 30,466</td>
<td>Waikato University</td>
</tr>
</tbody>
</table>

Table 1: K1-P2 AMS radiocarbon dates
paleontological deposits on Kangaroo Island. Of these, 20 species represented 'small mammals' (<1kg) and accounted for 90.78% of the identified specimen count. The most abundant small mammals identified were native mice and rats (Muridae) which contributed 81.26% of all identified specimens of which nine murid species were identified. Pygmy possums were also abundant.

Large mammals (>1kg) consisted of 12 species and contributed 9.22% of the specimens identified and consisted primarily of saltatorial (hopping) species. Other large mammals consist mostly of isolated occurrences. However, carnivorous marsupials are notable, making up 29.15% of identified specimens.

Faunal analysis

Species richness of the K1-P2 assemblage drops during the LGM and increases through the Deglacial and Holocene. Simpson Index and Shannon Index diversity measurements show a new view of species diversity on Kangaroo Island remaining relatively high and constant throughout the sequence. This sustained high diversity may have aided hunter gatherer populations remaining on Kangaroo Island after isolation from the mainland.

Sediment analysis

K1-P2 sediments appear to be largely derived from similar local parent sources from which three sediment types have been recorded. Sediment characteristics are thought to be indicative of climatic fluctuations over the past 20,000 years showing a change in geochemical signature and particle size from the dry LGM and deglaciation to the isolation of Kangaroo Island and onset of the highly variable Holocene climate. With isolation of the island local sediments dominate.

Species guilds

The K1-P2 deposit illustrated that fauna with distinct habitat preferences change in relative abundance (Ri%) throughout the sequence. These preferences relate to their current and historical ecological preferences and contain a certain amount of plasticity. They illustrate a change in climate and ecology throughout the Holocene as precipitation varied.

Three distinct faunal guilds can be seen in K1-P2 over the past 20,000 years:

- arid to semi-arid heath and grasslands;
- closed woodland/forest with dense understorey; and
- dry sclerophyll and mallee with sparse understorey.

Taphonomy

The taphonomic study illustrated that vertebræ and post cranial material were the most common element. As element abundances are consistent throughout all layers it suggests that similar formation processes were acting upon the K1-P2 deposit throughout time. This relatively consistent trend also suggests that hydrological activity has not had a lasting effect on element survivorship.

Results of this taphonomic study suggest that owls were the main accumulator of faunal material excavated from the three K1-P2 layers studied. Pit fall entrapment is the second mode of accumulation with saltatorial species being most prone to trapping. Element survivorship is high suggesting that erosional events have not had a lasting impact on the faunal signal.

Relative abundance of size throughout the sequence and absence of cut or tooth marks suggests two modes of accumulation: pitfall entrapment (via solution pipe) and owl accumulation. Previous studies have shown that pitfall entrapment produces a near random sample of the faunal community while frequencies of owl prey match the frequencies of prey in the surrounding community (Reed 2003; Avenant 2005). Therefore, the K1-P2 assemblage should offer an accurate representation of the faunal community at time of deposition.

Discussion

This new study highlights some of the natural resources that local peoples may have exploited throughout late Pleistocene and after isolation of the island. Recorded changes in the climate and ecology would have affected subsistence strategies at some level perhaps altering seasonal movement. Archaeological assemblages studied over the past 40 years (Hope et al. 1977; Robinson et al. 1999; McDowell et al. 2013a, 2013c; Langeluddecke 2001) record a severe drop in species richness on Kangaroo Island through the Holocene, however, this new research shows high survivorship up until European arrival. Langeluddecke (2001) found that mid-sized macropodids were the most numerous species within the Cape Du Couedic archaeological assemblage suggesting that they were a prime food source. These species remain abundant up until European arrival suggesting that resource depletion may not have been a valid reason for the abandonment of Kangaroo Island.

This new study draws a very different picture of the Kangaroo Island environment over the past 20,000 years. It shows that few mammals became extirpated while severe environmental change and isolation took place. Hunter gatherer occupation patterns would have had to adjust to rising sea levels and isolated fauna would have seen raised hunting pressures. Why then do species richness and diversity on Kangaroo Island remain high following isolation? Relative abundances do show some change and perhaps this indicates change in fire regime signalling abandonment of the island.

Species present at European settlement

Only 13 non-volant mammals were recorded on Kangaroo Island at the time of European settlement. In addition, a heath mouse (Pseudomys shortridgei) was captured on Kangaroo Island in 1907 and identified in 2000, adding one more species to the list (Kemper et al. 2010). Although the colony of South Australia was founded in 1836 sealers and whalers had inhabited Kangaroo Island for decades (Clarke 1996:52). A recently discovered fur trapper’s site from Bales Bay on the south coast of Kangaroo Island has been dated to 200 years BP and offers insights into species present at or just before settlement (Walshe 2014). Layer 1 (L1) is the uppermost layer of K1-P2 and it is actively accumulating. The presence of glass and iron within L1 suggests that species represent richness on Kangaroo Island within temporal proximity to European arrival and at least within the last 1,000 years. When the species from Bales Bay and L1 are grouped they greatly add to the species present on Kangaroo Island at European arrival.

This new data changes the way we view species extirpation on Kangaroo Island. Previously it was postulated that the absence of species in the recorded fauna of Kangaroo Island meant that many species had gone extinct throughout the Holocene (Hope et al. 1977). Investigations had suspected climate change, changing fire regime and island isolation having a detrimental effect on Kangaroo Island’s fauna leading to a drop in species diversity may have aided hunter gatherer populations remaining on Kangaroo Island after isolation from the mainland.
richness of up to 45% before the arrival of Europeans (McDowell et al. 2013c). This new view of species richness, abundance and diversity attests to the resilience of Australia's non-volant mammal fauna to climate change but also adaption rather than migration in light of those changes.

Conclusion

K1-P2 offers a purely palaeontological assemblage from which changes in fauna, vegetation and sediment trends since the LGM can be analysed (Adams 2013). Although very scant data is reported here, the study suggests that the Pleistocene to early Holocene fauna of Kangaroo Island was resilient to anthropological pressure, climate change and isolation due to sea level rise. Analyses show that although some species are not recorded surviving up to present, species diversity remained stable and high up until European arrival. This suggests that the arrival of Europeans set in place an unprecedented series of island extinctions that were recorded in K1.

With one in four Australian marsupial species currently threatened with extinction (MacPhee and Fleming 1999:333) it is essential that we use palaeoecological data to understand mammal tolerances and distributions in the past to advise on policy in the future. As Kangaroo Island is a large landmass void of foxes and rabbits it has potential for reintroduction of threatened Australian mammals like quolls (Dasyurus maculatus and Dasyurus viverrinus) which may see declines in introduced predators like cats (Felis catus). The K1-P2 faunal assemblage illustrates how resilient Australia's mammal fauna are to climate change and how palaeoecology can play a vital role in understanding the past ecosystems hunter gatherer communities occupied.

References

Baudin, N. 1803 The journal of Post Captain Nicolas Baudin, 1803.

Clark, R. and R. Lampert 1981 Past changes in burning regime as markers of man's activity on Kangaroo Island, South Australia. Terra Australis 5:1-86.

Clarke, P. A. 1996 Early European interaction with Aboriginal hunters and gatherers on Kangaroo Island, South Australia. Aboriginal History 20:51.

Cooper, H. M. 1960 The archaeology of Kangaroo Island, South Australia. Adelaide: South Australian Museum.

Flinders, M. 1814 A voyage to terra Australis; undertaken in the years 1801-1803. London: Bulmer.

Howchin, W. 1903 Aboriginal occupation of Kangaroo Island, Transactions of the Royal Society of South Australia 27:90.

McDowell, M., G. Prideaux and K. Walsh 2013a Re-evaluating the Late Quaternary mammal fossil assemblage of Seton Rockshelter, Kangaroo Island, South Australia, including the evidence for late-surviving megafauna. Late Quaternary faunal responses to environmental change and isolation on a large Australian landbridge island. Unpublished B.Sci (PhD) thesis, School of Biological Sciences, Flinders University, Adelaide.

Walshe, K. 2014 Archaeological evidence for a sealers' and wallaby hunter's skinning site on Kangaroo Island, South Australia. The Journal of Island and Coastal Archaeology 9(1):130-143.
Dig It is a student-run journal and the official newsletter of the Flinders Archaeological Society. The publication began in 1997 and after a hiatus of at least five years, it was relaunched in 2012. The new series began in 2013. The purpose of Dig It is to provide students, from undergrad through to postgrad and recent graduates, with the opportunity to practise and familiarise themselves with writing, publishing, editing and the reviewing process involved in professional publications. It aims to offer emerging young academics with an avenue to engage with archaeological dialogues and discourse. In addition, it aims to keep aspiring archaeologists connected and informed about what is happening in the archaeological community.

Dig It is published twice a year and is printed at Flinders Press. Dig It considers a range of contributions, including research articles, essays, personal accounts/opinion pieces, book reviews and thesis abstracts for publication. We welcome contributions from local, interstate and international undergrad and postgrad students and recent graduates. The guidelines for contributors can be found here: http://flindersarchsoc.org/digit/guidelinesforcontributors/

Dig It is an open access journal. The journal and the individual articles can be freely distributed; however, individual authors and Dig It must always be cited and acknowledged correctly. The intellectual ownership remains with the individual authors. Articles, figures and other content cannot be altered without the prior permission of the author.

Correspondence to the Editor should be addressed to:
The Editor, Dig It c/o ArchSoc
Department of Archaeology
Flinders University
GPO Box 2100
Adelaide, 5001
or email <dig.it@flindersarchsoc.org>

Editor: Jana Rogasch
Co-editors: Matthew Ebbs (academic reviews), Antoinette Hennessy (field reports) and Jordan Ralph (layout and ArchSoc news)

Permanent review panel: Rhiannon Agutter, Amy Batchelor, Robert DeWet-Jones, Anna Foroozani, Simon Munt, Dianne Riley, Ada Dinckal, Fiona Shanahan, Rhiannon Stammers and Isabel Wheeler